

ПРОТОН-ЭЛЕКТРОТЕКС

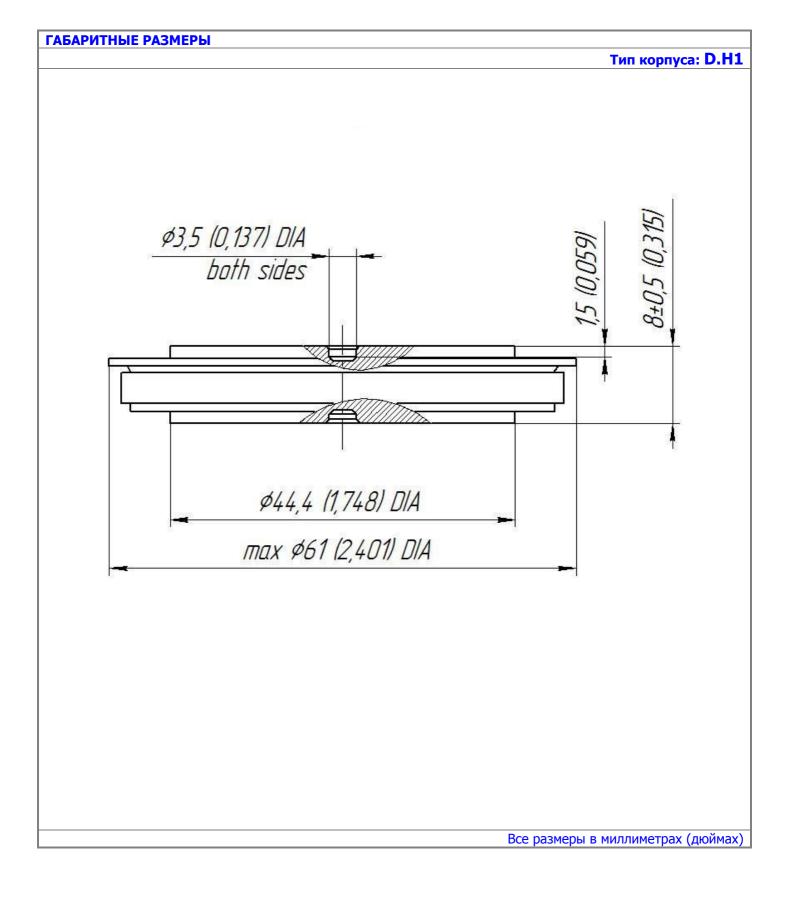
Оптимизирован для сильноточных выпрямителей Очень низкие статические потери Очень низкое тепловое сопротивление Сварочный Диод Тип Д053-7100-4

Типичное применение: сварка

Средний прямой ток		I _{FAV}	7100 A
Повторяющееся импульсное обратное напряжение		U _{RRM}	200 ÷ 400 B
U _{RRM} , B	200		400
Класс по напряжению	2		4
T _i , °C		- 6	0 ÷ 170

ПРЕДЕЛЬНО ДОПУСТИМЫЕ ЗНАЧЕНИЯ ПАРАМЕТРОВ

Обозначение и наименование параметра			Значение		Условия измерения
Параме	тры в проводящем состоянии				
I_{FAV}	Средний прямой ток	A	7100 7065	T_c =84.5°C; двухстороннее охлажден T_c =85°C; двухстороннее охлаждени 180 эл. град. синус; 50 Гц	
I_{FRMS}	Действующий прямой ток	А	11147		; двухстороннее охлаждение; ад. синус; 50 Гц
T	V-com vi -cu		55.0 63.0	$T_j=T_{j \text{ max}}$ $T_j=25 \text{ °C}$	180 эл. град. синус; 50 Гц $(t_p=10\ \text{мс});$ единичный импульс; $U_R=0\ \text{B}$
${ m I}_{\sf FSM}$	Ударный ток	кА	58.0 67.0	$T_j=T_{j \text{ max}}$ $T_j=25 \text{ °C}$	180 эл. град. синус; 60 Гц (t _p =8.3 мс); единичный импульс; U _R =0 В
* 2.		A ² c·10 ³	15125 19845	$T_j=T_{j \text{ max}}$ $T_j=25 \text{ °C}$	180 эл. град. синус; 50 Гц $(t_p=10\ \text{мс});$ единичный импульс; $U_R=0\ \text{B}$
I ² t	Защитный фактор		13960 18625	$T_j = T_{j \text{ max}}$ $T_j = 25 \text{ °C}$	180 эл. град. синус; 60 Гц (t _p =8.3 мс); единичный импульс; U _R =0 В
Блокиру	ующие параметры				
U_{RRM}	Повторяющееся импульсное обратное напряжение	В	200 ÷ 400	T _{j min} < T _j < 180 эл. гр	<Т _{ј max} ; ад. синус; 50 Гц
U_{RSM}	Неповторяющееся импульсное обратное напряжение	В	300 ÷ 500		<Т _{ј max} ; 180 эл. град. синус; 50 чный импульс
U_R	Постоянное обратное напряжение	В	0.75 [·] U _{RRM}	$T_j = T_{j \text{ max}};$	
Тепловы	ые параметры				
T _{stg}	Температура хранения	°C	- 60 ÷ 170		
T _j	Температура р-п перехода	°C	- 60 ÷ 170		
Механи	ческие параметры				
F	Монтажное усилие	кН	20.0 ÷ 24.0		
а	Ускорение	M/C ²	100 50	В не зажатом состоянии В зажатом состоянии	


ХАРАКТЕРИСТИКИ

Обозначение и наименование характеристики			Значение	Усло	овия измерения	
Характе	ристики в проводящем состоянии					
U _{FM} Импульсное прямое напряжение, макс		В	1.05 0.85	T_j =25 °C; I_{FM} = 5000 A T_j = $T_{j max}$; I_{FM} = 5000 A		
U _{F(TO)}	Пороговое напряжение, макс	В	0.700	$T_j = T_{j \text{ max}};$		
r _T	Динамическое сопротивление, макс	мОм	0.029	$0.5 \pi I_{FAV} < I_{T}$	$<$ 1.5 π I _{FAV}	
Блокиру	ощие характеристики					
I_{RRM}	Повторяющийся импульсный обратный ток, макс	мА	50	$T_j = T_{j \text{ max}};$ $U_R = U_{RRM}$		
Тепловь	не характеристики					
R_{thjc}			0.0100		Двухстороннее охлаждение	
R _{thjc-A}	Тепловое сопротивление p-n переход-корпус, макс	°С/Вт	0.0220	Постоянный ток	Охлаждение со стороны анода	
$R_{\text{thjc-K}}$			0.0180		Охлаждение со стороны катода	
R _{thck}	Тепловое сопротивление корпус- охладитель, макс	°С/Вт	0.0050	Постоянный ток		
Механич	ческие характеристики					
W	Масса, тип	Г	140			
D _s	Длина пути тока утечки по поверхности	мм (дюйм)	7.3 (0.287)			
D _a	Длина пути тока утечки по воздуху	мм (дюйм)	4.0 (0.157)			

МАРКИРОВКА

D	053	7100	4	УХЛ2
1	l	2	3	4

- 1. Конструктивное исполнение
- 2. Средний прямой ток, А
- 3. Класс по напряжению
- 4. Климатическое исполнение по ГОСТ 15150: УХЛ2, Т

Содержащаяся здесь информация является конфиденциальной и находится под защитой авторских прав. В интересах улучшения качества продукции, ЗАО «Протон-Электротекс» оставляет за собой право изменять информационные листы без уведомления.

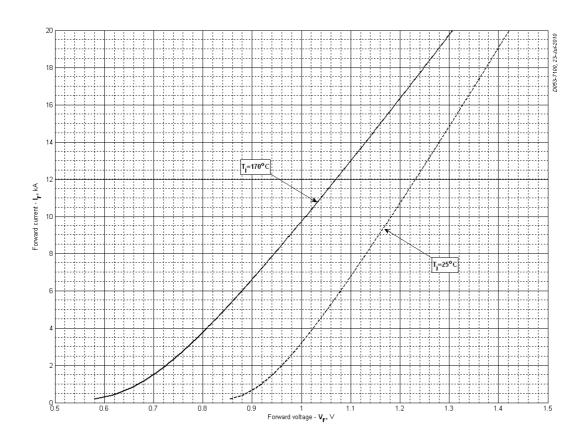


Fig 1 - Forward characteristics of Limit device

Analytical function for Forward characteristic:

$$V_F = A + B \cdot i_F + C \cdot \ln(i_F + 1) + D \cdot \sqrt{i_F}$$

_	Coefficients for max curves $T_{j} = 25^{\circ}C \qquad T_{j} = T_{j \text{ max}}$					
Α	0.871279	0.604620				
В	0.022742	0.028003				
C	0.074643	0.110962				
D	-0.029819	-0.044329				

Forward characteristic model (see Fig. 1).

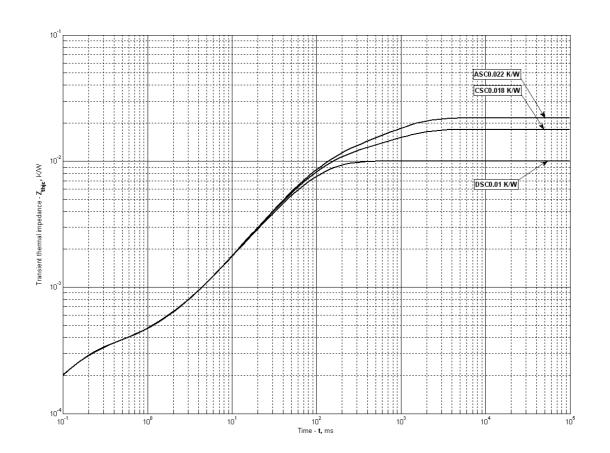


Fig 2 - Transient thermal impedance

Analytical function for Transient thermal impedance junction to case Z_{thjc} for DC:

$$Z_{thjc} = \sum_{i=1}^{n} R_i \left(1 - e^{-\frac{t}{\tau_i}} \right)$$

Where i = 1 to n, n is the number of terms in the series.

t = Duration of heating pulse in seconds.

 \mathbf{Z}_{thjc} = Thermal resistance at time t.

 $\mathbf{R_i}$ = Amplitude of p_{th} term.

 τ_{i} = Time constatnt of r_{th} term.

DC Double side cooled

i	1	2	3	4	5	6
R _i , K/W	0.0006653	0.008075	0.0008021	0.000002097	0.0003024	0.0001541
τ _i , s	0.1135	0.07453	0.02706	0.001159	0.0001065	0.005288

DC Cathode side cooled

i	1	2	3	4	5	6
R _i , K/W	0.007842	-0.000008694	0.009044	0.000637	0.00003824	0.0002913
τ _i , s	0.855	5.938	0.08082	0.0161	0.0009731	0.0001012

DC Anode side cooled

De 7 thode side cooled							
i	1	2	3	4	5	6	
R _i , K/W	0.0113	0.0006624	0.009027	0.0006651	0.00004564	0.0002844	
τ _i , s	0.8627	0.6978	0.08402	0.01725	0.0007281	0.00009948	

Transient thermal impedance junction to case Z_{thic} model (see Fig. 2)

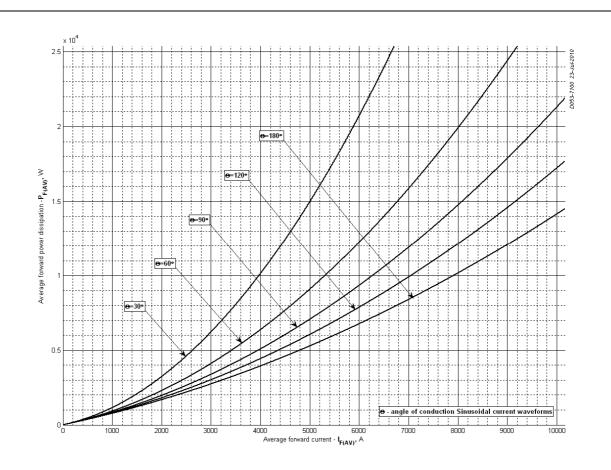


Fig 3 - Mean forward power dissipation P_{FAV} vs. Mean forward current I_{FAV} for sinusoidal current waveforms at different conduction angles (f=50Hz, DSC)

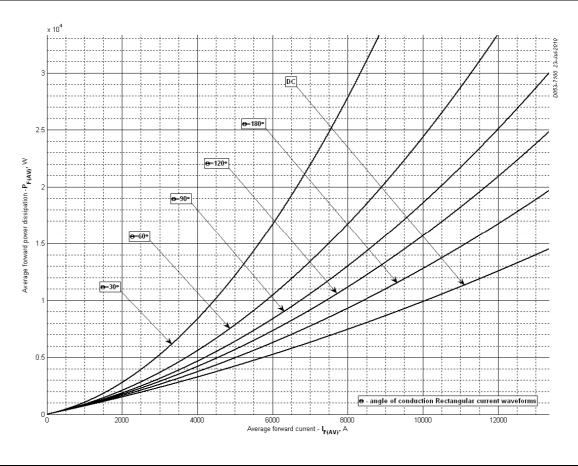


Fig 4 – Mean forward power dissipation P_{FAV} vs. Mean forward current I_{FAV} for rectangular current waveforms at different conduction angles and for DC (f=50Hz, DSC)

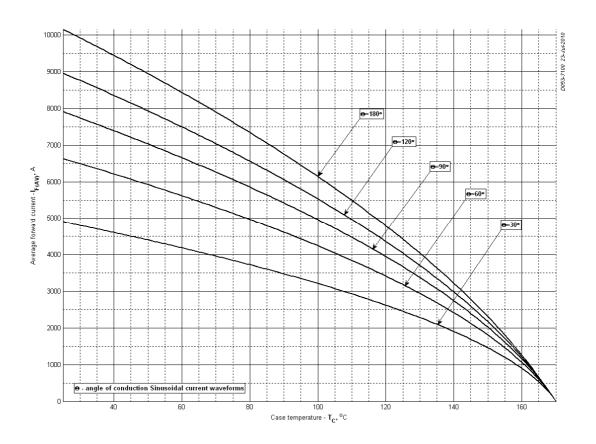


Fig 5 – Mean forward current I_{FAV} vs. Case temperature T_C for sinusoidal current waveforms at different conduction angles (f=50Hz, DSC)

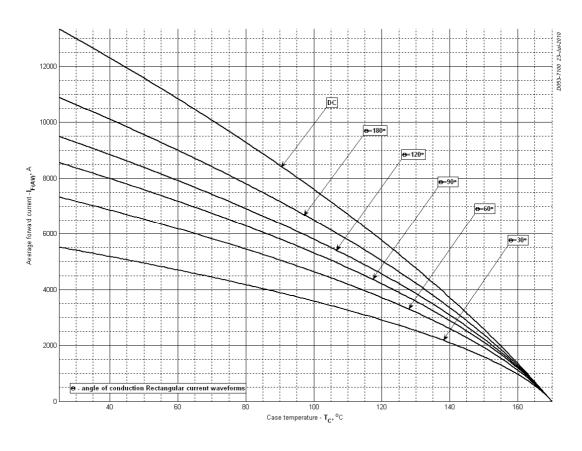
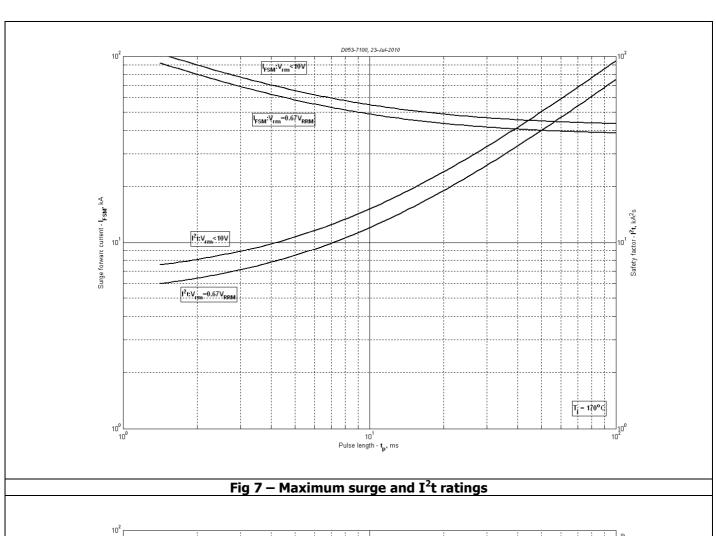



Fig 6 - Mean forward current I_{FAV} vs. Case temperature T_C for rectangular current waveforms at different conduction angles and for DC (f=50Hz, DSC)

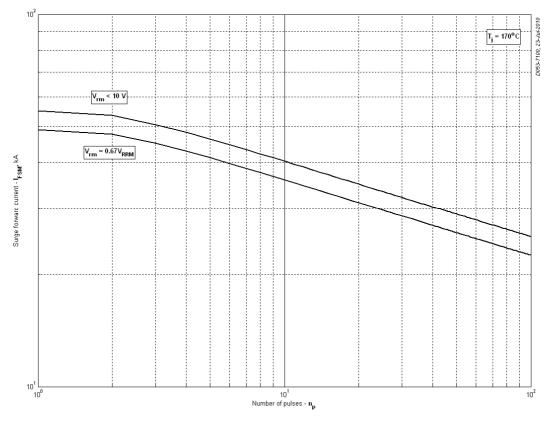


Fig 8 - Maximum surge ratings